Estimation under Multicollinearity : Application of Restricted Liu and Maximum Entropy Estimators to the Portland Cement Dataset

نویسنده

  • SK Mishra
چکیده

2. Various Methods of Estimation under Severe Multicollinearity Conditions: In what follows, we give a brief account of some important methods of estimation under severe multicollinearity conditions: (i). The Restricted Least Squares (RLS) Estimator of β : If we can put some restriction on the linear combination of regression coefficients such that , R r β = then the RLS estimator of β denoted by * β is given by * 1 1 1 1 ˆ ˆ ˆ ( ) ( ) : ; S R RS R r R S X y S X X β β β β − − − − ′ ′ ′ ′ = + − = = . (ii). The Ordinary Ridge Regression (ORR) Estimator of β : As suggested by Hoerl and Kennard (1970) it is possible to mitigate the multicollinearity problem by perturbation of S matrix such that its principal diagonal elements are inflated. The Ordinary Ridge Regression estimator is given by 1 ˆ ( ) ( ) S I X y β κ κ − ′ = + . As stated by Kaçiranlar et al., writing 1 1 ( ) W I S κ κ − − = + we may

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Maximum Entropy Estimators: Applications to the Portland Cement Dataset

Consider the linear regression model y = X + u in the usual notation. In many applications the design matrix X is frequently subject to severe multicollinearity. In this paper an alternative estimation methodology, maximum entropy is given and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We described the generalized maximum entropy (GME) ...

متن کامل

Jackknifed Liu-type Estimator in Poisson Regression Model

The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...

متن کامل

Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications

Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...

متن کامل

Estimation of Lower Bounded Scale Parameter of Rescaled F-distribution under Entropy Loss Function

We consider the problem of estimating the scale parameter &beta of a rescaled F-distribution when &beta has a lower bounded constraint of the form &beta&gea, under the entropy loss function. An admissible minimax estimator of the scale parameter &beta, which is the pointwise limit of a sequence of Bayes estimators, is given. Also in the class of truncated linear estimators, the admissible estim...

متن کامل

Liu-Type Logistic Estimators with Optimal Shrinkage Parameter

Multicollinearity in logistic regression affects the variance of the maximum likelihood estimator negatively. In this study, Liu-type estimators are used to reduce the variance and overcome the multicollinearity by applying some existing ridge regression estimators to the case of logistic regression model. A Monte Carlo simulation is given to evaluate the performances of these estimators when t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004